Clustering des trajectoires thérapeutiques pour la bronchopneumopathie chronique obstructive (BPCO) : comparaison des méthodes d’encodage de séquences

Event: 17ème Colloque Données de Santé en Vie Réelle de l’AFCROs, Paris, France Authors: Romane Pean, Nina Temam, Diane Vincent, Marie Génin, Pauline Guilmin View Presentation Introduction L’analyse des séquences thérapeutiques et évènements médicauxest essentielle pour optimiser la prise en charge des patients. Cependant, lacomplexité et variabilité de ces séquences posent un défi méthodologique. Leclustering […]

Policy makers must adopt agile signal detection tools to strengthen epidemiological surveillance and improve pandemic preparedness

Publisher: Health Policy Authors: Cédric Mahé, Aimo Kannt, AIOLOS Consortium View publication Abstract The SARS-COV2 pandemic has highlighted the urgent need for agile and responsive disease surveillance systems. To strengthen epidemiological surveillance and improve pandemic preparedness, policymakers must adopt real-time signal detection tools that integrate multisource data, including non-traditional health data, advanced analytics, and artificial […]

Analyzing recurrent events in multiple sclerosis: a review of statistical models with application to the MSOAC database

Publisher: Journal of NeurologyAuthors: David Herman, Julien Tanniou, Emmanuelle Leray, Chloe Pierret, Quentin Pilard View Publication Abstract Patients with multiple sclerosis (MS) are susceptible to experience recurrent events of disability progression and relapses. Many studies still focus on analyzing MS events with traditional methods such as Cox proportional hazards, Poisson, and logistic regression that either […]

AI-Driven Disease and Care Modeling and Simulation: A Framework for Simulating Real-World Scenarios in Non-Small Cell Lung Cancer (NSCLC)

figure2

Event: ELCC 2025, Paris, France Authors: Antoine Movschin, Lise Bosquet, David Pérol, Melissa Rollot, Louise Dry, Coriande Clemente, Farah Al Nakib, Mathilde Berthelot, Margaux Törnqvist View Poster Background Advances in personalized medicine have driven targeted therapy for NSCLC through mutation identification, but their rarity in real-world (RW) settings limits traditional RCTs. External control arms (ECAs) offer an […]

Connecting Electronic Health Records to a Biomedical Knowledge Graph to Link Clinical Phenotypes and Molecular Endotypes in Atopic Dermatitis

Publisher: Nature Scientific Reports Authors: Francesca Frau, Paul Loustalot, Margaux Törnqvist, Nina Temam, Jean Cupe, Martin Montmerle, Franck Augé View Publication Abstract Precision medicine is defined by the U.S. Food & Drug Administration as “an innovative approach to tailoring disease prevention and treatment that considers differences in people’s genes, environments, and lifestyles”. To succeed in […]

Identification of risk profiles for liver injury in adults with multiple sclerosis using artificial intelligence method

figure2

Event: The Liver Meeting – AASLD (American Association for the Study of Liver Diseases) 2024, San Diego, California, USA Authors: Dominique Larrey, Fang Liz Zhou, Claire Brulle-Wohlhueter, Myriam Benamor, Jeffrey Chavin, Neda Razaz, Raphael Bejuit, Julien Dauriat, Théophile Reppelin, Romane Péan, Sam Ekhtiari, Nicolas Wagner, Fred Lublin View Poster Background The evolution of multiple sclerosis (MS) […]

Identification of risk profiles for liver injury in adults with multiple sclerosis using artificial intelligence method

figure

Authors: Dominique Larrey, Fang Liz Zhou, Claire Brulle-Wohlhueter, Myriam Benamor, Jeffrey Chavin, Neda Razaz, Raphael Bejuit, Julien Dauriat, Théophile Reppelin, Romane Péan, Sam Ekhtiari, Nicolas Wagner, Fred Lublin Event: Congrès AFEF (Association Française pour l’Étude du Foie) View Poster Introduction et Objectif L’évolution du traitement de la sclérose en plaques (SEP) au cours des deux dernières […]

Analyzing Recurrent Events in Multiple Sclerosis: A Review of Statistical Models with Application to MSOAC Trial

Event: ECTRIMS 2024, Copenhagen, Denmark Authors: D. Herman, J. Tanniou, N. Lambert, P. Loustalot, Q. Pilard View Poster Introduction In Multiple Sclerosis (MS), patients are likely to face repeated event such as confirmed disability progression (CDP). However, clinical trials often focus on analyzing time to first events, ignoring subsequent events, which are of clinical importance, despite the availability of statistical […]

Tailored diagnostic decision tree resulting from machine learning to improve early diagnosis of ASMD

Event: WORLDSymposium 2024 San Diego, USA Authors: M. Domenica Cappellini, R. Giugliani, M. Törnqvist, P. Guilmin, C.Clémente, M. Montmerle, A. Chiorean, T. Reppelin, Stefaan Sansen, Alexandra Dumitriu, Neha Shah, Maja Gasparic View Poster Abstract  Acid sphingomyelinase deficiency (ASMD) is a rare and debilitating lysosomal storage disease and delays in diagnosis are common.  We employed machine learning (ML) on electronic health […]

Artificial Intelligence (AI) ToOLs for Outbreak Detection and response: a transnational platform for surveillance, monitoring and decision support

Event: ISPOR Europe 2023, Copenhagen, Denmark  Authors: M. Génin, J. Botz, L. Coudeville, M. Eisenlauer, T. Fauvel, F. Huschka, N. Lambert, D. Wang, V. Bosch Castells, C. Commaille-Chapus, B. Frandji, M. Haberstroh, JY. Robin, P. Roehn, H. Sippel, P. Thiele, E. Thommes, C. Weber, B. Amzal, H. Fröhlich, A. Kannt, C. Mahé View Poster Objectives […]