
An end-to-end analytical pipeline to extract value from patient testimonials: extraction of topics discussed by patients.

Figure 1: Overview of the methodology
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The methodology is inspired by a recently introduced
topic extraction analytical pipeline based on the
comparison of semantics of testimonies, which has
been adapted with new steps ( ) to generalize the
method, improve its performances and the results
interpretation.

1- Data cleaning: Testimonies are cleaned to remove
special characters and non-informative elements, and to
isolate important information (see Figure 1).

2- Data pre-processing:
• Sentences transformation: Vector representations of

the testimonies (embeddings) capturing the meaning
of the testimonies are derived with Sentence-BERT
[4], a language pre-trained model based on BERT [5].

• Concentrate the signal: To concentrate the signal,
remove the noise and ease interpretation,
embeddings dimensionality is reduced to two using
the UMAP algorithm [6].

3- Modeling:
• Gather similar testimonies: Semantically related texts

are grouped together into an optimal number of
clusters (based on silhouette scores) using a
hierarchical clustering (HCA) [7].

 Anomaly deletion: In order to obtain more robust
clusters and improve their consistency, outliers of
each cluster are identified with Local Outlier Factor [8]
(LOF) and excluded.

 Semi-automated post-processing: HCA dendrogram’s
facilitates post-processing interventions by
automatically suggesting the clusters that can be
merged together or split into two subclusters.

4- Clusters’ interpretation and labelling :
 Sentiment analysis: To accompany the cluster’s

interpretation and to account for the polarity of the
testimonies that constitute them, a sentiment analysis
[9] is performed.

• Most representative clusters’ words: Clusters
understanding is assisted by the TF-IDF top scores
selection for word unigrams, bigrams and trigrams
inside each cluster. This provides the discriminative
words and phrases for each cluster.

• Labelling: Clusters are finally labelled manually based
on the most prevalent words and the sentiment of the
testimonies they group.

• Patients’ testimonies (e.g. posts on forums or
responses to questionnaires) provide valuable insights
to define and characterize patient-reported outcomes
(PRO), quality of life and patients’ perspective on their
disease.

• Traditional NLP methods used for the automatic
extraction of topics from textual data are based on the
frequency of co-occurrence of words in documents and
are therefore not adapted to the analysis of patient
testimonies which tend to be rather short texts and
where co-occurrences are rare.

• We present an innovative methodology, more
appropriate to the analysis of shorter texts such as
testimonies, which allows in the presented use case to
identify the items raised by 4474 patients' testimonies
of kaggle data from WebMD [1] on their use of strong
opiates.

CONCLUSION
The proposed method makes possible the
extraction of coherent topics from a large
volume of short texts in an automated and
efficient way. Applied to patients' testimonies,
such analysis provides strong insights on
patients’ perception about a wide range of
healthcare topics (side effects, treatment,
symptoms...), paving the way for better PRO
definitions and patient-centric evaluation, and
striving better adherence to treatments.
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• Tested on 4474 patients’ testimonies, the method provides 60 coherent and interpretable topics clusters, which
cover 9 different general themes.

• Among the identified clusters, the most prevalent topics were related to treatment efficacy and side effects. Other
topics also reflect the fears of some patients regarding potential addictions to these treatments. Some clusters
contain testimonies that are too varied or rare to be grouped together: these clusters have been grouped into a
“messy" theme.

• Compared to previous works, the improvement of the clustering post-processing step makes the analysis pipeline
much faster to execute, especially on the costly part of interpreting the results, without altering the performance.

• The 15% of testimonies in a messy theme show that
the methodology is still perfectible, although the
results also depend on the richness of the data.

• To improve the fineness of the clusters, the method
can be improved by having more adapted
embeddings for each type of data (e.g. with a model
trained on sentences from the same field as the
testimonies)

• Medical expertise is required for the interpretation of
the results, so that the groupings, distinctions and
labelling of clusters are as relevant as possible.

OBJECTIVES
Building upon an efficient NLP topic modeling
method based on semantic proximity we
introduced recently [2][3], the objective is to
improve results coherence and interpretability
using a fit-for-purpose post processing step.
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Figure 2: Results visualization 
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